Continuing on from my Ambient Noise Level Indicator, I wanted to create an enclosure and make it stand-alone – not requiring a computer to do the processing. I ended up with a little device that converts noise amplitude to the light spectrum: Noise Crayon.
Simulink Embedded Coder offers an ARM Cortex-M support toolbox, which includes code optimisation for the MCU and QEMU emulation but lacks any S-Block drivers for the device. The lack of drivers limits the Simulink development to merely number crunching. You can create cevel blocks that execute external C functions but this requires separate source files with a shared header and pre-defined initialisation, leaving the model without full control of the hardware. In this post, I go over the process of creating hardware driver S-Blocks.
The Atmel Studio IDE is a useful tool thanks to the comprehensive debugging support and management of project drivers via the Atmel Software Framework (ASF) – coming from a hardcore Vim advocate. One thing I dislike about IDEs is the fact they hide the make process from the user making it difficult to break a project away from the software. On wishing to develop code on different operating systems (being Visual Studio based, Atmel Studio is limited to Windows), and outside the IDE, I set about creating a Makefile for an Atmel Studio project built around the ASF.
I wanted a wire dispenser that wasn’t fixed in place so I could move it to where I was working. To my surprise, such a thing doesn’t exist (I couldn’t seem to find fixed ones either, other than using a kitchen towel rail). Keen to put my new found love for OpenSCAD to use, I set about making such a thing.
I felt that the battery powered Bluetooth speaker I made could be improved with more colour! Taking a leaf from the VU meters on amplifiers of the 80s, I decided it would be neat to sandwich clear acrylic between the plywood layers, each with an integrated LED that would form a full body amplitude meter.
As part of my work at MACH Acoustics – understanding how internal ambient noise levels affect different environments – I was inspired to create an indicator that shows when noise becomes higher than the base level. Some solutions already exist but they are pricey (because they used calibrated sound level meters), and not very engaging. I wanted something that could sit in a classroom and be a friendly indicator for the teachers and students, bringing the noise back down and perhaps learning something in the process!
As part of MACH Acoustics’ open window research, they wanted a FDTD model to visualise sound waves moving through various window opening scenarios. I created a FDTD function, that would create an impulse wave at a specified position then calculate discrete pressure points across a defined grid size and time step.
I wanted to create a special birthday present for my girlfriend, whom had no speaker system. I decided a battery powered Bluetooth speaker would be neat, and having just learnt use of the laser cutter I came up with a layered design.